N ov 2 00 6 Hamiltonians and Lagrangians of non - autonomous one - dimensional mechanical systems

نویسنده

  • G. F. Torres del Castillo
چکیده

It is shown that a given non-autonomous system of two first-order ordinary differential equations can be expressed in Hamiltonian form. The derivation presented here allow us to obtain previously known results such as the infinite number of Hamiltonians in the autonomous case and the Helmholtz condition for the existence of a Lagrangian. Se muestra que un sistema dado, no autónomo, de ecuaciones diferenciales ordinarias de primer orden puede expresarse en forma hamiltoniana. La deducción presentada aquí nos permite obtener resultados previamente conocidos tales como el número infinito de hamiltonianas en el caso autónomo y la condición de Helmholtz para la existencia de una lagrangiana.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 5 Not So Classical Mechanics – Unexpected Symmetries of Classical Motion

A survey of topics of recent interest in Hamiltonian and Lagrangian dynamical systems, including accessible discussions of regularization of the central force problem; inequivalent Lagrangians and Hamiltonians; constants of central force motion; a general discussion of higher-order Lagrangians and Hamiltonians with examples from Bohmian quantum mechanics, the Korteweg-de Vries equation and the ...

متن کامل

Robust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems

  This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...

متن کامل

Lagrangians and Hamiltonians for one-dimensional autonomous systems

An equation is obtained to find the Lagrangian for a one-dimensional autonomous system. The continuity of the first derivative of its constant of motion is assumed. This equation is solved for a generic nonconservative autonomous system that has certain quasi-relativistic properties. A new method based on a Taylor series expansion is used to obtain the associated Hamiltonian for this system. Th...

متن کامل

ar X iv : 0 81 1 . 42 17 v 1 [ m at h . C A ] 2 6 N ov 2 00 8 DYNAMICS OF QUASICONFORMAL FIELDS

A uniqueness theorem is established for autonomous systems of ODEs, ˙ x = f (x), where f is a Sobolev vector field with additional geometric structure, such as delta-monoticity or reduced quasiconformality. Specifically, through every non-critical point of f there passes a unique integral curve.

متن کامل

ar X iv : h ep - t h / 05 01 23 1 v 1 2 8 Ja n 20 05 Noncommutative Quantum Mechanics with Path Integral ∗

We consider classical and quantum mechanics related to an additional noncommutativity, symmetric in position and momentum coordinates. We show that such mechanical system can be transformed to the corresponding one which allows employment of the usual formalism. In particular, we found explicit connections between quadratic Hamiltonians and Lagrangians, in their commutative and noncommutative r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006